
02. A student performs an experiment on the photoelectric effect, using two materials A and B. A plot of V_{stop} vs ν is given in Figure.

- a. Which material A or B has a higher work function?
- b. Given the electric charge of an electron = 1.6×10^{-19} C, find the value of h obtained from the experiment for both A and B. Comment on whether it is consistent with Einstein's theory:

Sol.

a. Here threshold frequency of, ν_{0A} = 5 imes 10 14 Hz and of B, is given by

$$\nu_{OB} = 10 \times 10^{14} Hz$$

The work function is given by $\phi_0 = h\nu_o$ or $\phi_0 \propto \nu_0$

$$\therefore \frac{\phi_{0A}}{\phi_{0B}} = \frac{5 \times 10^{14}}{10 \times 10^{14}} < 1 \text{ or } \phi_{0A} < \phi_{0B}$$

Therefore, the work function is higher for material B than A.

b. For metal A,

slope
$$=\frac{h}{e}=\frac{2}{(10-5)\times 10^{14}}$$
 or $h=\frac{2\times e}{5\times 10^{14}}=\frac{2\times 1.6\times 10^{-19}}{5\times 10^{14}}=6.4\times 10^{-34} Js$

For metal B,

Slope
$$=\frac{h}{e}=\frac{2}{(15-10)\times 10^{14}}$$
 or $h=\frac{2.5\times e}{5\times 10^{14}}=\frac{2.5\times 1.6\times 10^{19}}{5\times 10^{14}}=8\times 10^{-34}Js$

Since the value of h from the experiment for metals A and B is different. Hence, the experiment is not consistent with the theory.